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Hamilton’s differential equations are written down in full on the supersymplectic su- 
perspace Iw * z They consist of six different sets of equations, one of which is Hamilton’s 1 . 
equations on the underlying two-dimensional (q,p) phase space. As for the remaining five, 
three are algebraic and two are dynamical. Of particular interest is the appearance of a 
connection-type set of equations for parallel transport with structure group 0 ( I,1 ). The al- 
gebraic equations play a crucial role in proving that the integral flow acts as supersymplectic 
transformations of W21*, if and only if it is Hamiltonian. The fact that the supersymplectic 
transformations depend on odd parameters is fundamental. Finally, the conditions under 
which the integral flow defines a supergroup action of R’l’ are also given. 
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Introduction 

The purpose of this paper is to write down in full detail the system of 
differential equations corresponding to Hamilton’s equations in a simple, non- 
trivial, supersymplectic superspace, R 212. We follow the approach of ref. [ 1 I ] to 
integral flows and superdifferential equations on the one hand, and the general 
results for finite-dimensional supersymplectic supermanifolds of ref. [ 4 ] on 
the other. Some insight into the structure of the supergroup of supersymplectic 
transformations is obtained by using the complete set of equations to prove 
that the integral flow of (super-)Hamilton equations is supersymplectic if and 
only if it is (super-)Hamiltonian, a generalization to supermanifold theory 
of the well known result. It is seen along the way that when the full system 
of equations is solved, the flow results in an element of the supergroup of 
supersymplectic transformations depending non-trivially on the odd parameter 
coming from the integration process. 
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BACKGROUND 

The first reference on the subject of superdifferential equations is due to 
Shander [ 131 (we refer the reader to ref. [6] for a concise statement of 
his results). He proved a rectification theorem for superfields satisfying the 
generic hypothesis of being weakly non-degenerate. His main result states 
that generically, there are three-essentially distinct-types of superfields. On 
the other hand, his approach to the ODE problem consists of integrating a 
superfield by means of one of the rectified forms; the question of which of 
the three is to be used depends on some set of invariants to be read off from 
the superfield itself (one such invariant is the Lie self-superbracket, but there 
are more). In other words, each superfield would dictate which is the best 
suited way to pose its differential equation, and ultimately to integrate it. In 
this manner, the integration of superfields is not based on a single universal 
derivation, but at least on three; the question for non-generic fields was left 
open still. 

The ODE problem was also considered in ref. [ 8 1, but from a more universal 
point of view: ODE’s were posed on supermanifolds for every supervector 
field, and the integration was carried out with the help of a single derivation 
(a, as in the Cm category). In this manner, all even superfields could be 
integrated without special hypotheses of generic type. The authors, however, 
were unable to integrate certain odd superfields, where even ad hoc techniques 
within their approach failed to produce an integral flow. Previously, a different 
formulation of ODE’s on supermanifolds was given in ref. [3] following the 
coalgebra methods of ref. [4]. This was probably the first attempt to explore 
the Lie theoretic properties of the solution to a superdifferential equation. 
However, it was limited from the start to even superfields. 

In a recent work [ 111, we addressed the problem of posing and solving 
differential equations on supermanifolds. Our approach is similar to that of 
ref. [ 81, as it uses a single universal derivation to carry out the integration 
process: a, + a,, r being an odd parameter. The advantage is that it produces 
integral flows not only for homogeneous super-fields, but for any superfield 
satisfying the generic hypotheses. Most recently it has been proved that a 
unique solution exists fir any superfield regardless of homogeneity or any 
other special hypotheses, even of generic type (cf. ref. [lo] ). The differential 
equation defined by any given supervector field acquires then a precise meaning 
(cf. refs. [ IO,1 11, and $2 below for a brief review). 

On the other hand, Hamiltonian systems on supermanifolds have been also 
considered in the literature. For finite-dimensional supersymplectic superman- 
ifolds, the most comprehensive account is still Kostant’s pioneering reference 
[4]. However, Hamilton’s equations were never posed there, perhaps because 
there was no satisfactory notion at the time of superdifferential equations, 
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nor of integral flows. Nevertheless, Kostant’s approach succeeded in deriving 
many important properties via the algebraic machinery (e.g., cohomological 
arguments) that may substitute some of the information thrown by the actual 
integration of the dynamical equations. This approach may be generalized so 
as to produce infinite-dimensional Hamiltonian systems. The most exhaustive 
and complete account of this subject can be found in the book of Kupershmidt 
[ 51, which has been written with the applications of supersymmetry to clas- 
sical and quantumn field theories in mind. A transition to finite-dimensional 
systems from the results in ref. [ 51 can be obtained via discretization of some 
equations, but no geometric picture of the flows is made. Instead, proofs of 
conservation laws are again algebraic, thus omitting any explicit form of an 
integral flow (i.e., no analog of Stone’s theorem is really used). More recently, 
further work has been done to fill in some of the gaps left in ref. [4]. In fact, 
the structure of finite-dimensional supersymplectic supermanifolds has now 
been completely elucidated (cf. refs. [ 7,121). Finally, it is worth mentioning 
that some work on Euler’s equations has also been done lately. We refer the 
reader to ref. [ 9 1, where such equations have been written-following the 
approach of ref. [8]-in general, and in a rather detailed fashion. 

1. Supersymplectic structure of R212 

Our aim is to deal with a specific example in which all the pertinent com- 
putations can be performed explicitly, and exactly, so as to actually appreciate 
the role played by the various pieces of the general structure. Thus, we shall 
work with the supermanifold R212, viewed as 

We shall use greek letters to denote the odd coordinates (a basis, {<, 0, of 
linear functionals on R2), and the usual (q,p) coordinates for the underlying 
Cm manifold 0X2. We shall endow R212 with the supersymplectic form 

o = dqdp + d{d[. (1.1) 

One notes that wc = dq dp is a symplectic form on R2, and since dc and d[ 
commute, 01 = d< dc defines a Lorentzian metric on (W’) *. 

Now, given a super-function, H, on [w 2 2, the Hamiltonian supervector field 1 
defined by it is completely determined by the condition, i (XH ) o = dH (cf. 
ref. [ 4]), and it is given in local coordinates by 

xH = (apH)dq - (dqH)dp + (acH)“+ + (%H)% (1.2) 
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where, for any superfunction, f = fe + fi E C” (lR2 ) 8 A (R2 ) *, f n = fo - fi 
(the rules followed throughout this work for algebraic manipulations are exactly 
those given in ref. [4] ). If we display the superfunction H in full, we have 

H = Ho + H,t + H& + H&, (1.3) 

where HO, Ht, Hc, and Hcc are C” functions on R2. Thus, 

etcetera. It is now the superdifferential equation defined by the super-vector 
field (1.2) that we want to write down in full. 

2. Superdifferential equations in general 

We recall from ref. [ 111 that every supervector field, X, on a superdomain, 
M = (M, AM) (dM being the structural sheaf of super-functions on the 
underlying C” manifold M), gives rise to an ODE with prescribed initial 
data. In analogy to the C” theory, a solution is given in terms of the super-time 
parameters {t, r}, which are nothing but a set of (local) coordinates defined 
(on some neighborhood of 0 E R) on R’l*. To solve the ODE determined by 
X means to find a supermanifold morphism 

l-: R’I’ x M + M, (2.1 j 

such that 

evl,=,o 0 5 0 r’ = evlt,ro 0 r* 0 X, (2.2) 

subject to the initial condition 

ro(Ccxid) =id. (2.3) 

The equality (2.2) is understood as superderivations of the sheaf of super- 
functions on M: r* pulls back superfunctions on M to (W’It x M via r; 5 is 
the lift to IW’I’ x M of a preferred superfield, D, on [W’I’. It is defined by the 
conditions, D o at * = xI*oD, and Doz2+ = 0, at and 7r2 being the projections 
of ~‘1’ x M into the corresponding factors. A few simple arguments (cf. ref. 
[ 111) show that D must be chosen as 

D = al + a,, (2.4) 
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in order to make sense of differential equations, for any supervector field. 
Finally, note that we have used the suggestive symbol “ev]I=lO” to denote the 
pull-back algebra map resulting from the inclusion, C,, x id : M + [W’I’ x M. 
Here, C,, is the constant map defined by the algebra morphism J H f (to) lo, 
from superfunctions f on R’l’ to superfunctions on M (cf. refs. [4,1] ). 

A fundamental difference with the C” theory is that the integral flow r 
does not always define a Lie supergroup action of [w’l’ in the supermanifold. 
In fact, Lie supergroup actions have been studied in ref. [ 11, and it has been 
shown that R’l’ has a naturally defined sum-like morphism, 

which gives to it the structure of an additive supergroup. Now, (2.1) is a Lie 
supergroup action if, in addition to (2.3), the following equation is satisfied: 

ro(Qo(K,X~~)XKj)=ro(a,xro(n~xn~)). (2.5) 

(Here, ni denotes the projection morphism onto the ith factor of the product 
[w’lr x R1ll x M). It has been shown in ref. [ 111 that the supergroup action 
property for the integral flow is satisfied if and only if the homogeneous 
components, Xe and Xi, of the super-field satisfy the following conditions: 

[Xc,Xt] = 0 and [Xi,Xt] = 0. (2.6) 

Now, in combining the morphism r with the local problem of actually 
integrating equation (2.2), a coordinate expression for r is needed. Let M be 
an (m, n)-dimensional superdomain with coordinates {y’; P}. We shall write 

+ C gfp,p;eAp; ewe” + . . . , 
A<p<v 

(2.7b) 

where pj is the projection onto the jth factor of the product ~‘1’ x M. We 
shall also write an arbitrary supervector field, X, in the same coordinate patch 
as 

x = C{A~ + C Ate” + CA;,efleU + . . . }ay, 
i P PC” 
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so that finally, the local expressions translate (2.2) into the following series of 
equations: 

etc., where use has been made of the fact that for any C” function f on M, 
P f is given by f o y. + C y$.Q f o yo tV’8” + . - . . 

3. Hamilton’s superdifferential equations on R212 

We shall now specialize the general system (2.9) above to the case of the 
Hamiltonian supervector field XH, defined by the superfunction H as in ( 1.3). 
In doing this, we shall slightly change the notation as follows: The morphism 
r will now be expressed in coordinates as 

Then, eqs. (2.7) specialize to 

(3.1) 

(3.2a) 

(3.2b) 
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(3.2~) 

where 

(detg)=det(i f) and ?=(:I), 

and if (Uij ) is some matrix of C” functions, 7’ (aii) = (aij o 7)) i.e., the pull 
back under 7 of each of the entries. 

Note that the usual Hamilton equations (3.2a) are quite independent of 
the rest of the system. Besides, once the system (3.2a) is solved, most of 
the expressions in (3.2b)-(3.2f) are determined. For example, eqs. (3.2b) 
immediately yield the coefficients gt and gc of the flow. Also note that 
eqs. (3.2~) are of the form g’ g-* = T*A, which, in general, defines parallel 
transport along 7, with respect to the connection (Lie algebra valued one- 
form) A, on a two-dimensional vector bundle (cf. ref. [ 21). In our case, 
the structure group for this connection is the Lorentz group, 0 ( l,l). After 
these equations are solved, eqs. (3.2d) are again algebraic and completely 
determine the matrix on the left hand side. Equations (3.2e) are dynamical, 
and the classical theorem on existence and uniqueness of solutions for ODE’s 
guarantees a solution of it. That solution may be finally plugged into (3.2f) to 
completely solve the system uniquely under the initial condition (2.3), which 
in terms of the coefficients y and g of the flow reads as follows: 

Y4(4,P,0) = 4, YP(4,P,0) = P, &wAO) = 1, ‘$bLP,O) = 1, 

and all the other coefficient functions take the value zero when evaluated at 
t = 0. 



288 F. Ongay-Lmios and O.A. Srinchez- Valenzuela / Hamilton S equations on superspace 

4. Supersymplectic transformations depending on [W’I’ parameters 

We shall now think of T-as given in (3.1 )-as a supermanifold morphism, 

q,,,, : R2’2 + R2’2, 

depending on fixed values of the R’l’ parameters {t, T}. We shall impose the 
condition that r(,,,l belong to the supergroup of supersymplectic automor- 
phisms of R212, by requiring that 

l-&p = 0, (4.1) 

where the pull back r&lw is given by 

ri:,rj (dq dp + dc cK) = U *q dT *p + dT *< U *c, (4.2) 

with P being as in (3.1), but treating t and 7 as constants. Now, the quadratic 
structure of w (in the sense of ref. [ 121) is not preserved after pulling it back 
under an arbitrary morphism. Thus, r&l w will have a decomposition in terms 
of the various orders of homogeneity of the odd variables with 7 involved. In 
addition to the zeroth order (Cm) terms, there will be second order terms of 
the form 

Q2@K+Q’@((~+~)(d<+dO)+Qo@ddrdL (4.3a) 

as well as of the form 

(4.3b) 

and finally, fourth order terms of the form 

~2’ @ rK(dtf + dC) + Q ‘~3 7K + C)( (d<)2 + (do2 + edc), (4.3~) 

with SZk standing for the differential (Coo) k-forms defined on the (q,p) 
space, R2. On the other hand, the original supersymplectic form has only the 
zeroth order term dq dp and the second order term d< d[. By equating the C” 
coefficients on both sides of (4.1), one obtains a number of equations among 
the y’s and the g’s. Not all of these are independent, and it is a straightforward 
matter to verify that what remains is the following set of conditions: 

dy9 dyP = dq dp, 

& = 0, g;g: = 0, g;g: + g;&< = 19 

(4.4a) 

(4.4b) 
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Y,& dyP - Y; dy9 + gj dg; + g; dg: = 0, (4.4c) 

r,9dYP-y~dy9-(g~dgC+g;:d~)=0 9 (4.4d) 

Y; dYP - Y; dy9 - k,, dgC + g; d$) = 0, (4.4e) 

y,p,v; - Y;c Y,p - (&fc + g;&$ 1 = 0, (4.4f) 

Y&Y; - Y;(Ycp - (i$g,5, + g& 1 = 0. (4.W 

Now, the relation in (4.4a) says that the underlying flow 7 = (~9, yp) is 
symplectic. The conditions in (4.4b) express the fact that 

in other words, that the matrix valued function g takes values in the group 
0( l,l). Now, eqs. (4.4d) and (4.4e) may be written as equations of constraint 
by defining first the vector fields 

x, = Yid9 + Y,$$-h 

x, = Yf89 + rc”ap, 

and noting that ixdy9 dyp = ixdq dp = ixoe, in view of (4.4a). Therefore, 
(4.4d) and (4.4e) are equivalent to 

r;dp-$dq- k;dgc +&@I =O, 

y;dp - yC”dq - ($dgi + g; dge) =O, 

(4.4d’) 

(4.4e’) 

respectively. Here is now our main result: 

Theorem. Let r be given by (3.1). Suppose r satisfies Hamilton’s su- 
perdifferential equations (3.2a)-(3.2f). Then, for each pair, {t, 7}, of fixed 
values of the [wlI1 integration parameters, the jlow is supersymplectic; i.e., 
I&jo = o. Conversely, if the jlow is (locally) supersymplectic, then it is the 
solution to Hamilton S superdifferential equations, for some super-Hamiltonian 
H = Ho + Hct + H&I + H&. 

Proof: We have to check first that the solution coefficients, the y’s and g’s of 
the system (3.2a)-(3.2f), satisfy the conditions (4.4a)-(4.4f) above. Now, it 
is a well known classical result that (4.4a) follows from (3.2a). One also notes 
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that (4.4b) follows from (3.2c), as the latter says that g’g-’ is a function 
that takes values in the Lie algebra of 0 ( 1,l). Now, (4.4d) and (4.4e) follow 
from (3.2b) and (3.2d) by noting that (3.2b) implies that 

On the other hand, (3.2d) implies that 

Therefore, one obtains 

from which (4.4d) and (4.4e) are obtained after taking the appropriate C” 
linear combinations of the left hand sides. Similarly, (4.4f) and (4.4g) follow 
from (3.2d) and (3.2f). In fact, from (3.2d) one obtains 

Plugging this matrix into (3.2f), we obtain 

as required. 
Conversely, assume (4.4a)-(4.4f) hold true. Then (4.4a) already implies- 

by the well known classical result-that there is a locally defined Hamiltonian 
function, Ho, satisfying eqs. (3.2a). Equations (4.4b) imply, as we noted 
before, that the matrix valued function 
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takes values in 0 ( 1, 1). In particular, g’g-t takes values in the Lie algebra 
of 0 ( 1, 1 ), and therefore H~c is defined through (3.2~). Now, if we define 
Hr and Hc by means of (3.2b), then (3.2d) holds true if and only if (4.4d) 
and (4.4e) are satisfied [the very same argument used to deduce (4.4d) and 
(4.4e) from (3.2b) and (3.2d) applies here]. Similarly, with (3.2b) defined, 
(3.2f) holds if and only if (4.4f) and (4.4g) are satisfied. 

Finally, let us prove the one remaining case, namely, that eq. (4.4~~) holds 
if and only if (3.2e) does. We first note that the Hessian appearing in (3.2e) 
can be replaced; indeed, from (3.2a) one obtains 

Now, ;7 is a symplectomorphism, and hence 

In particular, 

Thus, we may rewrite (3.2e) as 
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On the other hand, using (3.2c), one obtains 

e#7g:) = -(aqrQWqH,, + a,yppa,H~()g;g;, 
a&$a,g~) = -(a,fT*a,H,, + apV7*apHt,)g$$. 

So finally, (3.2e) is reduced to 

where use has been made of eqs. (4.4b) above. Using this version of eq. 
(3.2e), (4.4~) follows, and conversely, (4.4~) makes this version of (3.2e) to 
hold true, and the proof is complete. 0 

Remark. Actually, the theorem is true in general, and not only for R*l*. The 
argument, however, is not completely elementary. One must define the notion 
of Lie derivative first, in a manner that links it to the flow r on the one 
hand, and to the algebraic property, LX = i(X) 0 d + d o i(X), on the other. 
In doing so, the supergroup action property of the flow should be avoided. 
The natural definition is [cf. eq. (3.2) 1: for any superform o, 

Lxw = evl,=, 0 D 0 I&j~. 

When this is done, and the equivalence with the algebraic definition is settled’, 
the classical well known proof runs well for supermanifolds. Our point in 
working out all the details on the R*l* case (without Lie derivatives) was to 
elucidate the role played by the various coefficients of the flow. 

5. Conditions for the super-Hamiltonian flow to define an R’I* supergroup 
action 

We shall close our discussion by finding out what are the conditions on the 
super-Hamiltonian, H, for its flow r to define a supergroup action of R’l’ 
on all*. As mentioned before, if we are given a non-singular, non-degenerate, 
supervector field, X, the necessary and sufficient conditions for this to happen 
are (cf. ref. [ 111 for a proof) 

[X,, x, ] = x,x, - x,x, = 0, 

[X*,X,] = 2x*x, = 0, (5.1) 
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where Xc and XI are the homogeneous components of X, and [., .] is the 
supercommutator of super-vector fields. Now, let XH be given by (1.2), and 
H as in (1.3). We shall write XH = X0 + X,, where 

Vow, a straightforward computation leads to 

[x0,x01 = { (ap{Ho, Ho + H&Htc - H(,&H,)r 

(5.2) 

where {F, G} denotes the Poisson bracket of the C” functions F and G. From 
these expressions it is not difficult to conclude that 

[X0,X11 = 0 * 
(aJtc "F) (z Yiij =O' 

[X,, XI ] = 0 +a HtHc = const. (5.4) 

Note that an even super-Hamiltonian (i.e., one of the form H = HO + H&X) 
always yields a field satisfying these R’I’ supergroup action conditions. On the 
other hand, odd super-Hamiltonians (of the form H = H& + H&) necessarily 
require HCHc to be a constant function in order to enjoy the same property. 
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Finally, non-homogeneous super-Hamiltonians further require Htc to be a 
constant function. 

We are indebted to Professor M. Rothstein for the very enlightening dis- 
cussions with him, and to Professors J. Mufioz-Masque and J. Monterde, for 
letting us know about their work on supersymplectic manifolds and Euler’s 
equations. Last, but not least, we would like to thank the referee for bringing 
to our attention some additional pieces of work of great relevance for the 
subject. 
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